考试报名信息,云课堂欢迎您!
当前位置:首页 > > 高考 > > 复习指导 > 内容页

cos2x的导数(secx的导数)

2023-05-02 08:47:58复习指导访问手机版364

云课堂小编为大家分享关于高考志愿、大学报名入口、成绩查询、志愿填报、高考复习等相关文章,希望能帮助到您!

推导过程

y=arcsinx y'=1/√(1-x²)

反函数的导数:

y=arcsinx,

那么,siny=x,

求导得到,cosy*y'=1

即y'=1/cosy=1/√[1-(siny)²]=1/√(1-x²)

隐函数导数的求解

方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;

方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);

方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;

方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。

反三角函数

反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数,分别记为Arcsinx,Arccosx,Arctanx,Arccotx,Arcsecx,Arccscx。但是,在实函数中一般只研究单值函数,只把定义在包含锐角的单调区间上的基本三角函数的反函数,称为反三角函数,这是亦称反圆函数。

为了得到单值对应的反三角函数,人们把全体实数分成许多区间,使每个区间内的每个有定义的y值都只能有惟一确定的x值与之对应。

WWW..e-laoshi.com云课堂专注教育信息,涵盖范文,研究生,考研,本科大学,MBA,高考,成人自考,艺考,中专,技校,职业学校,高职,卫校录取分数,成绩查询,招生简章等信息

TAG标签: 导数arcsinx