考试报名信息,云课堂欢迎您!
当前位置:首页 > > 高考 > > 复习指导 > 内容页

三角形内心的性质aoa+bob+coc=0(三角形的内心例题及答案)

2023-05-02 09:44:47复习指导访问手机版437

云课堂小编为大家分享关于高考志愿、大学报名入口、成绩查询、志愿填报、高考复习等相关文章,希望能帮助到您!

三角形内心的性质

设⊿ABC的内切圆为☉O(半径r),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2。

1、三角形的三条角平分线交于一点,该点即为三角形的内心。

2、三角形的内心到三边的距离相等,都等于内切圆半径r。

3、r=S/p。

4、∠BOC=90°+A/2。

5、点O是平面ABC上任意一点,点O是⊿ABC内心的充要条件是:a(向量OA)+b(向量OB)+c(向量OC)=向量0。

6、点O是平面ABC上任意一点,点I是⊿ABC内心的充要条件是:向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c)。

7、⊿ABC中,A(x1,y1),B(x2,y2),C(x3,y3),那么⊿ABC内心I的坐标是(ax1/(a+b+c)+bx2/(a+b+c)+cx3/(a+b+c),ay1/(a+b+c)+by2/(a+b+c)+cy3/(a+b+c)。

8、(欧拉定理)⊿ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^2-2Rr。

内心做法

1.做出△ABC的两个内角的平分线,交于一点,该点即为三角形内心。

2.做出△ABC的外接圆O,过圆心O分别作AC、BC(任意两边)的垂线,两条垂线与圆O交于E、F,连接AF、BE交于点I,则点I即为内心。

内切圆的半径

(1)在RtΔABC中,∠C=90°,r=(a+b-c)/2.

(2)在RtΔABC中,∠C=90°,r=ab/(a+b+c)

(3)任意△ABC中r=(2*S△ABC)/C△ABC (C为周长)

WWW..e-laoshi.com云课堂专注教育信息,涵盖范文,研究生,考研,本科大学,MBA,高考,成人自考,艺考,中专,技校,职业学校,高职,卫校录取分数,成绩查询,招生简章等信息

TAG标签: 角形内心做法