云课堂小编为大家分享关于高考志愿、大学报名入口、成绩查询、志愿填报、高考复习等相关文章,希望能帮助到您!
电路相量2∠45+1∠30计算
相量有两种表示形式:1、模+幅角;2、复数形式。
加减法时,采用复数形式计算。如果是“模+幅角”的形式,就转化为复数形式。如你的题目中:2∠45°+1∠30°=2×(cos45°+jsin45°)+1×(cos30°+jsin30°)=√2/2+j√2/2+√3/2+j0.5=(√2/2+√3/2)+j(0.5+√2/2)。
乘除法时:使用模+幅角形式计算。Z1=R1∠φ1,Z2=∠φ2,则:Z=Z1×Z2=R1∠φ1×R2∠φ2=R1R2∠(φ1+φ2)。如果是复数形式,就需要将其转化为模+幅角的形式:因为Z1=R1∠φ1=R1cosφ1+jR1sinφ1=x+jy,所以R1=√(x²+y²),φ1=arctan(y/x)。
此外,复数阻抗的实部称为等效电阻,虚部称为电抗,模称为阻抗模,幅角称为阻抗角,它们分别用符号R、X、|Z|、φ表示。复数导纳的实部称为等效电导,虚部称为电纳,模称为导纳模,幅角称为导纳角,它们分别用符号G、B、|Y|、φ┡表示,于是 Z =R+jX=|Z|e。
电路分析中的相量法怎么理解
正弦加减乘除微积分频率不变,因此相量可以理解为旋转的向量。相对静止,于是可以用向量的方法分析,常用极坐标形式。最后再加上频率就可以转化为时域表达式。
WWW..e-laoshi.com云课堂专注教育信息,涵盖范文,研究生,考研,本科大学,MBA,高考,成人自考,艺考,中专,技校,职业学校,高职,卫校录取分数,成绩查询,招生简章等信息