云课堂小编为大家分享关于高考志愿、大学报名入口、成绩查询、志愿填报、高考复习等相关文章,希望能帮助到您!
法向量简介法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。
定义:
三维平面的法线是垂直于该平面的三维向量。曲面在某点P处的法线为垂直于该点切平面的向量。
法线是与多边形的曲面垂直的理论线,一个平面存在无限个法向量。在电脑图学的领域里,法线决定着曲面与光源的浓淡处理,对于每个点光源位置,其亮度取决于曲面法线的方向。
如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。
计算:
对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。
用方程ax+by+cz=d表示的平面,向量(a,b,c)就是其法线。
如果S是曲线坐标x(s,t)表示的曲面,其中s及t是实数变量,那么用偏导数叉积表示的法线为。
如果曲面S用隐函数表示,点集合(x,y,z)满足 F(x,y,z)=0,那么在点(x,y,z)处的曲面法线用梯度表示为。
如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。
WWW..e-laoshi.com云课堂专注教育信息,涵盖范文,研究生,考研,本科大学,MBA,高考,成人自考,艺考,中专,技校,职业学校,高职,卫校录取分数,成绩查询,招生简章等信息