考试报名信息,云课堂欢迎您!
当前位置:首页 > > 高考 > > 复习指导 > 内容页

实对称矩阵的特征值可以是0吗(实对称矩阵的特征值和对角线)

2023-05-03 06:40:06复习指导访问手机版105

云课堂小编为大家分享关于高考志愿、大学报名入口、成绩查询、志愿填报、高考复习等相关文章,希望能帮助到您!

实对称矩阵主要性质

实对称矩阵A的不同特征值对应的特征向量是正交的。

实对称矩阵A的特征值都是实数,特征向量都是实向量。

n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。

若λ0具有k重特征值必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。

特征向量的性质

矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。

线性变换的特征向量是指在变换下方向不变,或者简单地乘以一个缩放因子的非零向量。

特征向量对应的特征值是它所乘的那个缩放因子。

特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。

线性变换的主特征向量是最大特征值对应的特征向量。

特征值的几何重次是相应特征空间的维数。

有限维向量空间上的一个线性变换的谱是其所有特征值的集合。

WWW..e-laoshi.com云课堂专注教育信息,涵盖范文,研究生,考研,本科大学,MBA,高考,成人自考,艺考,中专,技校,职业学校,高职,卫校录取分数,成绩查询,招生简章等信息

TAG标签: 特征值线上矩阵