考试报名信息,云课堂欢迎您!
当前位置:首页 > > 高考 > > 复习指导 > 内容页

离散数学连通的定义(离散数学连通度怎么求)

2023-05-03 09:34:28复习指导访问手机版351

云课堂小编为大家分享关于高考志愿、大学报名入口、成绩查询、志愿填报、高考复习等相关文章,希望能帮助到您!

对于一个无向图而言,它的一个极大连通子图即为一连通支。比如说,一个图由三部分构成,其中每一部分都是连通的,但三个部分之间互相不连通,那么每一部分即为无向图的一个连通分支。此图的连通分支数为3。

更形象些,你把教学楼附近的几棵树合起来看做是一个无向图,树叶和树枝分叉点为图的结点,树枝为图的边,每一棵树是连通的,但树与树之间没有树枝相连。因而,每棵树都可视为一个连通分支,树的个数为连通分枝数。

拓扑空间X的所有连通分支之族是X的一个分类。换言之,X的每个连通分支都是非空集;X的不同连通分支不相交;X的所有连通分支之并为X。

拓扑空间X是连通空间当且仅当X是它的唯一连通分支。C不是拓扑空间X的任意连通子集的真子集。则称C为拓扑空间X的一个连通分支(或极大连通子集),设X是多于一点的拓扑空间,若拓扑空间X的每个单点集都是X的连通分支。

WWW..e-laoshi.com云课堂专注教育信息,涵盖范文,研究生,考研,本科大学,MBA,高考,成人自考,艺考,中专,技校,职业学校,高职,卫校录取分数,成绩查询,招生简章等信息