本内容由云课堂小编为大家分享:
高中数学知识点顺口溜大全
高中数学知识点顺口溜有哪些?2023年高中数学知识点顺口溜有哪些记忆方法口诀的呢?下面就让小编给大家带来高中数学知识点顺口溜,希望大家喜欢!
wwW.ZiliaoPan.Com高中数学知识点顺口溜
数学思想方法总论
高中数学一线牵,代数几何两珠连,
三个基本记心间,四种能力非等闲。
常规五法天天练,策略六项时时变,
精研数学七思想,诱思导学乐无边。
一线:函数一条主线(贯穿教材始终)
二珠:代数、几何珠联璧合(注重知识交汇)
三基:方法(熟) 知识(牢) 技能(巧)
四能力:概念运算(准确)、逻辑推理(严谨)、空间想象(丰富)、分解问题(灵活)
五法:换元法、配方法、待定系数法、分析法、归纳法。
六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动。
七思想:函数方程最重要,分类整合常用到。
数形结合千般好,化归转化离不了。
有限自将无限描,或然终被必然表。
特殊一般多辨证,知识交汇步步高。
数学知识方法分论
集合与逻辑
集合逻辑互表里,子交并补归全集。
对错难知开语句,是非分明即命题。
纵横交错原否逆,充分必要四关系。
真非假时假非真,或真且假运算奇。
函数与数列
数列函数子母胎,等差等比自成排。
数列求和几多法?通项递推思路开。
变量分离无好坏,函数复合有内外。
同增异减定单调,区间挖隐最值来。
三角函数
三角定义比值生,弧度互化实数融;
同角三类善诱导,和差倍半巧变通。
解前若能三平衡,解后便有一脉承;
角值计算大化小,弦切相逢异化同。
方程与不等式
函数方程不等根,常使参数范围生;
一正二定三相等,均值定理最值成。
参数不定比大小,两式不同三法证;
等与不等无绝对,变量分离方有恒。
解析几何
联立方程解交点,设而不求巧判别;
韦达定理表弦长,斜率转化过中点。
选参建模求轨迹,曲线对称找距离;
动点相关归定义,动中求静助解析。
立体几何
多点共线两面交,多线共面一法巧;
空间三垂优弦大,球面两点劣弧小。
线线关系线面找,面面成角线线表;
等积转化连射影,能割善补架通桥。
排列与组合
分步则乘分类加,欲邻需捆欲隔插;
有序则排无序组,正难则反排除它。
元素重复连乘法,特元特位你先拿;
平均分组阶乘除,多元少位我当家。
二项式定理
二项乘方知多少,万里源头通项找;
展开三定项指系,组合系数杨辉角。
整除证明底变妙,二项求和特值巧;
两端对称谁最大?主峰一览众山小。
概率与统计
概率统计同根生,随机发生等可能;
互斥事件一枝秀,相互独立同时争。
样本总体抽样审,独立重复二项分;
随机变量分布列,期望方差论伪真。
高中重要知识点顺口溜
一、集合与函数
内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,
若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,
偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;
其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;
图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;
反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;
函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;
图象第一象限内,函数增减看正负。
二、三角函数
三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;
向下三角平方和,倒数关系是对角,
变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,
保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,
幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,
先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,
简单三角的方程,化为最简求解集。
三、不等式
解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。
图形函数来帮助,画图建模构造法。
四、数列
等差等比两数列,通项公式N项和。
两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。
数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。
归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。
还有数学归纳法,证明步骤程序化:
首先验证再假定,从K向着K加1,
推论过程须详尽,归纳原理来肯定。
五、复数
虚数单位i一出,数集扩大到复数。
一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。
箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。
代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。
i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。
虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。
几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,
逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。
利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。
四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。
复数实数很密切,须注意本质区别。
六、排列,组合,二项式定理
加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。
排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。
两条性质两公式,函数赋值变换式。
七、立体几何
点线面三位一体,柱锥台球为代表。
距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。
线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。
计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。
射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。
公理性质三垂线,解决问题一大片。
八、平面解析几何
有向线段直线圆,椭圆双曲抛物线,
参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,
两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;
都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,
给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;
平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。
图形直观数入微,数学本是数形学。
高考数学的考点有哪些
章节 | 核心考点 | 考查内容 | |
第一章集合与常用逻辑用语 | 集合的概念与运算 | 集合的运算 | 不等式的解法和集合的运算 |
命题及其关系 | 充分、必要、充要条件的判断 | 以其他章节为背景考查 | |
简单逻辑联结词 | 含有量词的命题否定 | 特称命题的否定 | |
第二章函数的概念与基本初等函数 | 函数基本概念及基本性质 | 分段函数及其应用、函数的奇偶性、单调性、周期性 | 分段函数及其应用、函数的奇偶性、单调性、周期性 |
二次函数与幂函数 | 二次函数 | 二次函数图像的巧用 | |
指数与指数函数 | 指数与指数函数 | 比较大小、画图像 | |
对数与对数函数 | 对数与对数函数 | 比较大小、画图像 | |
函数的图像 | 函数图像的识别 | 判断函数大致图像 | |
函数与方程 | 函数零点 | 零点问题的理解 | |
函数模型与应用 | 函数的实际应用 | ||
导数与积分 | 导数的几何意义、求积分 | 曲线的切线问题 | |
导数的应用 | 导数的应用 | 导数、单调性、极值、零点、最值、不等式证明 | |
第三章三角函数、解三角形 | 三角函数的概念、同角关系、诱导公式 | 三角函数基本关系、诱导公式 | 给值求值、简单化简 |
三角恒等变形 | 三角函数的求值 | 切化弦、辅助角公式、去平方、去同名相乘 | |
三角函数的图像与性质 | 三角函数的图像和性质 | 牢记三角函数图像并会画 | |
三角函数的综合应用 | 三角函数的性质 | 三角函数的周期、单调性、对称、最值、零点等 | |
解三角形 | 正、余弦定理 | 正余弦定理、三角形面积与三角函数的交汇 | |
第四章平面向量及数系扩展 | 平面向量概念、线性运算、坐标运算、基本定理 | 平面向量的基本运算 | 线性运算、夹角、平行、垂直 |
平面向量的数量积及应用 | 向量的模、数量积 | 向量的数量积、模、夹角 | |
数系扩充与复数引入 | 复数的概念及其运算 | 复数概念及其运算 | |
第五章 数列 | 数列的概念及表示 | 数列概念及其表示 | 数列通项及其基本数列的证明 |
等差数列 | 等差数列的概念与运算 | 等差数列通项及求和、等差中项 | |
等比数列 | 等比数列的概念与运算 | 等比数列通项及求和、等比中项 | |
数列求和及其综合应用 | 数列综合应用 | 数列求通项、数列求和、数列与不等式 | |
第六章 不等式、推理与证明 | 不等式与不等式的关系 | 不等式性质 | 判断命题、比较大小、放缩证明 |
不等式解法 | 不等式解法 | 一元一次、一元二次、绝对值、分式、简单函数不等式 | |
简单线性规划 | 简单线性规划 | 求最值、求参数 | |
基本不等式应用 | 综合应用 | 不等式有解、恒成立、求参数 | |
推理与证明 | 合理推理 | 依据给出的内容进行推理 | |
第七章 立体几何 | 空间几何体三视图 | 三视图看法 | 几何体表面积、体积 |
空间几何体点线面位置关系 | 异面直线夹角 | 面面平行判断、求异面直线夹角 | |
线线、线面平行判断及性质 | 线面平行、面面平行、二面角 | 线面、面面平行证明 | |
线线、线面垂直判断及性质 | 线面垂直、面面垂直、二面角 | 线面、面面垂直证明 | |
空间角与距离、空间向量及其应用 | 面面垂直判断、二面角 | 垂直判断、空间向量证明、二面角 | |
第八章 平面解析几何 | 直线、圆的基本概念 | 基本概念 | 图像性质 |
直线与圆、圆与圆的位置 | 位置关系概念 | 解三角形、过定点、相切、点到线的距离 | |
椭圆 | 椭圆概念、几何性质 | 方程、离心率 | |
双曲线 | 双曲线概念、几何性质 | 方程、离心率、渐近线 | |
抛物线 | 抛物线定义 | 定义、方程、几何性质、勾股定理 | |
曲线与方程 | 轨迹、定点、位置关系 | ||
圆锥曲线综合 | 曲线与直线位置关系 | ||
第九章 算法 初步统计与统计案例 | 算法初步 | 程序框图 | 循环语句分析 |
统计与统计案例 | 总体分布、相关关系、抽样方法 | 总体分布的估计、回归分析、抽样方法 | |
第十章 计数原理与概率统计 | 分类加法、分布乘法计数原理和排列组合 | 利用排列组合解决实际问题 | |
二项式定理 | 利用通项公式求指定系数 | ||
随机事件及概率 | 求事件概率 | ||
古典概率及几何概率 | 利用公式求概率 | ||
离散型随机变量及其分布列、均值与方差 | 离散型随机变量及其分布列、均值与方差 | 利用互斥事件、相互独立事件的概率公式求概率、分布列、期望、方差 | |
二项分布于正态分布 | 二项分布于正态分布 | 求概率、期望、方差等 | |
参数方程与坐标系 | 主要概念 | 不同坐标、不同方程的转换 | |
不等式选讲 | 不等式 | 函数图像、绝对值不等式 |
高中数学必备知识点有哪些
1.课程内容:
必修课程由5个模块组成:
必修1:集合、函数概念与基本初等函数(指、对、幂函数)
必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
2.重难点及考点:
重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数
难点:函数、圆锥曲线
高考相关考点:
⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件
⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用
⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用
⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用
⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用
⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用
⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量
⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用
⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布
⑿导数:导数的概念、求导、导数的应用
⒀复数:复数的概念与运算
学好高中数学的窍门
掌握每一个公式定理
做课本的例题,课本的例题的思路比较简单,其知识点也是单一不会交叉的,如果课本上的例题你拿出来都会做了,说明你已经具备了一定的理解力。
做课后练习题,前面的题是和课本例题一个级别的,如果课本上所有的题都会做了,那么基础夯实可以告一段落。
进行专题训练提高数学成绩
1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。
2.错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。
云课堂(sxtgedu.net)专注教育信息,涵盖范文,研究生,考研,本科大学,MBA,高考,成人自考,艺考,中专,技校,职业学校,高职,卫校录取分数,成绩查询,招生简章等信息