本内容由云课堂小编为大家分享:
高考数学知识点梳理(整理)
高中数学一直是理科生眼中比较难的一门学科,其实高中数学有许多易混淆知识点,以下是小编整理的 高考数学知识点梳理,希望可以提供给大家进行参考和借鉴。
高考数学知识点梳理
一、函数、导数
1、函数的单调性
(1)设x1、x2∈[a,b],x1
f(x1)-f(x2)<0?f(x)在[a,b]上是增函数;
f(x1)-f(x2)>0?f(x)在[a,b]上是减函数.
(2)设函数y=f(x)在某个区间内可导,若f'(x)>0,则f(x)为增函数;若f'(x)<0,则f(x)为减函数.
2、函数的奇偶性
对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数;对于定义域内任意的x,都有f(-x)=-f(x),则f(x)是奇函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、函数y=f(x)在点x0处的导数的几何意义
函数y=f(x)在点x0处的导数是曲线y=f(x)在p(x0,f(x0))处的切线的斜率f'(x0),相应的切线方程是y-y0=f'(x0)(x-x0).
4、几种常见函数的导数
'n'n-1''①c=0;②(x)=nx;③(sinx)=cosx;④(cosx)=-sinx;⑤(ax)'=axlna;⑥(ex)'=ex;⑦(logax)=5、导数的运算法则'11';⑧(lnx)=xlnax
u'u'v-uv'
(v≠0).(1)(u±v)=u±v.(2)(uv)=uv+uv.(3)()=vv2''''''
6、会用导数求单调区间、极值、最值
7、求函数y=f(x)的极值的方法是:解方程f'(x)=0.当f'(x0)=0时:
(1)如果在x0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x0)是极大值;
(2)如果在x0附近的左侧f'(x)<0,右侧f'(x)>0,那么f(x0)是极小值.
二、三角函数、三角变换、解三角形、平面向量
8、同角三角函数的基本关系式
sin2θ+cos2θ=1,tanθ=sinθ.cosθ
9、正弦、余弦的诱导公式
kπ±α的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;
高中数学学习方法
1、每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
2、做题之后加强反思。学生一定要明确,现在正坐着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。
高中数学知识点之向量
1.向量可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。
2.规定若线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。具有方向和长度的线段叫做有向线段。
3.向量的模:向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。
注:向量的模是非负实数,是可以比较大小的。因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。
4.单位向量:长度为一个单位(即模为1)的向量,叫做单位向量.与向量a同向,且长度为单位1的向量,叫做a方向上的单位向量,记作a0。
5.长度为0的向量叫做零向量,记作0。零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。
高中数学知识点之向量的计算
1.加法
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2.减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
加减变换律:a+(-b)=a-b
3.数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π
向量的数量积的运算律
a·b=b·a(交换律)
(λa)·b=λ(a·b)(关于数乘法的结合律)
(a+b)·c=a·c+b·c(分配律)
向量的数量积的性质
a·a=|a|的平方。
a⊥b〈=〉a·b=0。
|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)
高考数学6大题型知识点
1、三角函数、向量、解三角形
(1)三角函数画图、性质、三角恒等变换、和与差公式。
(2)向量的工具性(平面向量背景)。
(3)正弦定理、余弦定理、解三角形背景。
(4)综合题、三角题一般用平面向量进行“包装”,讲究知识的交汇性,或将三角函数与解三角形有机融合,
重视三角恒等变换下的性质探究,重视考查图形图像的变换。
2、概率与统计
(1)古典概型。
(2)茎叶图。
(3)直方图。
(4)回归方程(2x2列联表)。
(5)(理)概率分布、期望、方差、排列组合。概率题贴近生活、贴近实际,考查等可能 性事件、互斥事件、独立事件的概率计算公 式,难度不算很大
3、立体几何
(1)平行。
(2)垂直。
(3)角a:异面直线角 b:(理)二面角、线面角。
(4)利用三视图计算面积与体积。
(5)文理有一定的差别,理科相关题目既可以用传统的几何法,也可以建立空间直角坐标 系,利用法向量等。文科对立体几何的考查主 要是空间中平行、垂直关系的判断与 证明,表面积体积的计算,直线与平面所成角的计算。理科对立体几何的考查主要是 空间中平 行、垂直关系的判断与证明,表面积体积的计算, 各类角的计算。
4、数列
(1)等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。
(2)文理科的区别较大,理科多出现在压轴题位置的卷型,理科注重数学归纳法。
(3)错位相减法、裂项求和法。
(4)应用题。
5、圆锥曲线(椭圆)与圆
(1)椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或差值法。
(2)圆的方程,圆与直线的位置关系。
(3)注重椭圆与圆、椭圆与抛物线等的组合题。
6、函数、导数与不等式
(1)函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。
(2)函数是考查的核心内容,与导数结合,基本题型是判断函数的单调性,求函数的最 值(极值),求曲线的切线方程,对参数取值范 围、根的分布的探求,对参数的分 类讨论以及代数推理等等。
(3)利用基本不等式、对勾函数性质。
高中数学解题技巧
1、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
2、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之
云课堂(sxtgedu.net)专注教育信息,涵盖范文,研究生,考研,本科大学,MBA,高考,成人自考,艺考,中专,技校,职业学校,高职,卫校录取分数,成绩查询,招生简章等信息