考试报名信息,云课堂欢迎您!
当前位置:首页 > > 高考 > > 答题技巧 > 内容页

2023年高中数学正弦定理和余弦定理知识点

2023-03-28 02:01:15答题技巧访问手机版452

本内容由云课堂小编为大家分享:

高中数学正弦定理和余弦定理知识点(精选)

高中的数学,正弦定理以及余弦定理全面地贯穿着整个高中数学阶段,可以说是非常重要的知识点了。下面小编给大家整理了关于高中数学正弦定理和余弦定理知识点的内容,欢迎阅读,内容仅供参考!

高中数学正弦定理

概述

a/sinA=b/sinB=c/sinC=2R

正弦定理

(1)已知三角形的两角与一边,解三角形

(2)已知三角形的两边和其中一边所对的角,解三角形

(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系

直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。[1]

证明

步骤1

在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/sinB=c/sinC

步骤2.

证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA因为在同圆或等圆中直径所对的圆周角是直角,所以∠DAB=90度因为在同圆或等圆中同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R类似可证其余两个等式。

高中数学余弦定理

概述

余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值

性质

对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质——S△ABC=1/2absinS△ABC=1/2bcsinAS△ABC=1/2acsinB

第一余弦定理(任意三角形射影定理)

设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有a=b·cos C+c·cos B, b=c·cos A+a·cos C, c=a·cos B+b·cos A。

证明

平面向量证法(觉得这个方法不是很好,平面的向量的公式a·b=|a||b|Cosθ本来还是由余弦定理得出来的,怎么又能反过来证明余弦定理)∵如图,有a+b=c (平行四边形定则:两个邻边之间的对角线代表两个邻边大小)∴c·c=(a+b)·(a+b)∴c?=a·a+2a·b+b·b∴c?=a?+b?+2|a||b|Cos(π-θ)又∵Cos(π-θ)=-Cosθ∴c?=a?+b?-2|a||b|Cosθ(注意:这里用到了三角函数公式)再拆开,得c?=a?+b?-2abcosC即 cosC=(a2+b2-c2)/2__a__b同理可证其他,而下面的cosC=(c2-b2-a2)/2ab就是将cosC移到左边表示一下。

平面几何证法

在任意△ABC中做AD⊥BC.

∠C所对的边为c,∠B所对的边为b,∠A所对的边为a

则有BD=cosB__c,AD=sinB__c,DC=BC-BD=a-cosB__c

根据勾股定理可得:

AC?=AD?+DC?b?=(sinB c)?+(a-cosB c)?b?=(sinB__c)?+a?-2ac cosB+(cosB)?c?b?=(sin?B+cos?B) c?-2ac cosB+a?b?=c?+a?-2ac cosBcosB=(c?+a?-b?)/2ac

高中数学常考知识及解题技巧

1、函数

函数题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

2.方程或不等式

如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

3.初等函数

面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

4.选择与填空中的不等式

选择与填空中出现不等式的题目,优选特殊值法;

5.参数的取值范围

求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

6.恒成立问题

恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

7.圆锥曲线问题

圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

8.曲线方程

求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

9.离心率

求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;

10.三角函数

三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

11.数列问题

数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

12.立体几何问题

立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;

13.导数

导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

14.概率

概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;

15.换元法

遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;

16.二项分布

注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;

17.绝对值问题

绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;

18.平移

与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;

19.中心对称

关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。

高中数学高分解题策略

1、“内紧外松”,集中注意,消除焦虑怯场

集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

2、沉着应战,确保旗开得胜,以利振奋精神

良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

3、寻求中间环节,挖掘隐含条件:

在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。

因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。

4、分类考察讨论:

在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。

5、简单化已知条件:

有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。

6、恰当分解结论:

有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。

7、确保运算准确,立足一次成功

数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

8、讲求规范书写,力争既对又全

考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、"感情分"也就相应低了,此所谓心理学上的"光环效应"。"书写要工整,卷面能得分"讲的也正是这个道理。

云课堂(sxtgedu.net)专注教育信息,涵盖范文,研究生,考研,本科大学,MBA,高考,成人自考,艺考,中专,技校,职业学校,高职,卫校录取分数,成绩查询,招生简章等信息

TAG标签: 定理余弦正弦