考试报名信息,云课堂欢迎您!
当前位置:首页 > > 高考 > > 答题技巧 > 内容页

正三棱柱的区别(正三棱柱有哪些特征)

2023-04-23 01:33:58答题技巧访问手机版221

本内容由云课堂小编为大家分享:

正三棱柱的性质有什么_正三棱柱和直三棱柱的区别

正三棱柱的性质是什么?就主要是指上下底面是全等的两正三角形,侧面是矩形,侧棱平行且相等的棱柱,并且上下底面的中心连线与底面垂直,也就是侧面与底面垂直。正三棱柱一定有外接球,但是不一定有内切球。下面小编给大家整理了关于正三棱柱的性质有什么的内容,欢迎阅读,内容仅供参考!

wWw.ZuiWan.Net

正三棱柱的性质有什么

正三棱柱不一定有内切球:若正三棱柱有内切球,则正三棱柱的高一定是球的直径,此时正三棱柱的棱长为底面边长的(根号3)/3倍。

正三棱柱一定有外接球:但直径一定不是正三棱柱的`高,直径为根号(h^2+4a^2/3),其中h为三棱柱的高,a为底面边长。

正三棱柱:三条侧棱皆平行,上表面和下表面是平行且全等的正三角形。正棱柱是侧棱都垂直于底面,且底面是正多边形的棱柱。

正三棱柱和直三棱柱的区别

根据三棱柱的基本性质和分类,可知正三棱柱和直三棱柱的区别为底面不同、侧面不同、范围不同,具体区别如下:

1、棱柱的底面不同

正三棱柱的底面是全等的正三角形,直三棱柱的底面是任意的三角形,不一定是正三角形。

2、棱柱的侧面不同

直三棱柱各个侧面的高相等,上表面和下表面平行且全等,侧面和底面互相垂直。每个侧面不一定相同。而正三棱柱的侧面是矩形,每个侧面相同。

3、包含的范围不同

正三棱柱是直三棱柱的特殊情况,即上下面是正三角形的直三棱柱。正三棱柱是底面是正三角形的直三棱柱。

高中必背的数学公式

(一)两角和公式

1、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

2、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

3、tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

4、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

(二)倍角公式

1、cos2A=cos2A-sin2A=2cos2A-1=1-2sin2A

2、tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgA

(三)半角公式

1、sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

2、cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

3、tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

4、ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

(四)和差化积

1、2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2、2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

3、sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

4、tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

5、ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

(五)几何体表面积和体积公式

1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)

3、正方体:表面积:S=6a2,体积:V=a3(a-边长)

4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)

5、棱柱:体积:V=Sh(S-底面积,h-高)

6、棱锥:体积:V=Sh/3(S-底面积,h-高)

7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)

8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)

9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)

10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)

11、直圆锥:V=πr^2h/3(r-底半径,h-高)

12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)

13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)

14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)

15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)

16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)

云课堂(sxtgedu.net)专注教育信息,涵盖范文,研究生,考研,本科大学,MBA,高考,成人自考,艺考,中专,技校,职业学校,高职,卫校录取分数,成绩查询,招生简章等信息

TAG标签: 棱柱有什么性质