本内容由云课堂小编为大家分享:
等比数列求和公式是什么
如果一个数列从第二项起,而且每一项与它的前一项的比都等于一个常数(不为0),那么,这个数列就叫做等比数列。这个常数叫做等比数列的公比。下面小编给大家整理了关于等比数列求和公式的内容,欢迎阅读,内容仅供参考!
Www.Xtw.Com.Cn等比数列求和公式
q≠1时 Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)
q=1时Sn=na1
(a1为首项,an为第n项,d为公差,q 为等比)
这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。注:q=1 时,{an}为常数列。利用等比数列求和公式可以快速的计算出该数列的和。
等比数列求和公式推导
由等比数列定义
a2=a1__q
a3=a2__q
a(n-1)=a(n-2)__q
an=a(n-1)__q 共n-1个等式两边分别相加得
a2+a3+...+an=[a1+a2+...+a(n-1)]__q
即Sn-a1=(Sn-an)__q,即(1-q)Sn=a1-an__q
当q≠1时,Sn=(a1-an__q)/(1-q)(n≥2)
当n=1时也成立.
当q=1时Sn=n__a1
所以Sn=n__a1(q=1);(a1-an__q)/(1-q)(q≠1)。
错位相减法
Sn=a1+a2+a3+...+an
Sn__q=a1__q+a2__q+...+a(n-1)__q+an__q=a2+a3+...+an+an__q
以上两式相减得(1-q)__Sn=a1-an__q
数学归纳法
证明:(1)当n=1时,左边=a1,右边=a1·q0=a1,等式成立;
(2)假设当n=k(k≥1,k∈N__)时,等式成立,即ak=a1qk-1;
当n=k+1时,ak+1=ak·q=a1qk=a1·q(k+1)-1;
这就是说,当n=k+1时,等式也成立;
由(1)(2)可以判断,等式对一切n∈N__都成立。
等比数列的性质
①在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈N?)m+n=p+q=2k(m,n,p,q,k∈N?),则am?an=ap?aq=a2kam?an=ap?aq=ak2。
②若数列{an}{an},{bn}{bn}(项数相同)是等比数列,则{λan}(λ≠0){λan}(λ≠0),{1an}{1an},{a2n}{an2},{an?bn}{an?bn},{anbn}{anbn}仍然是等比数列;
③在等比数列{an}{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,?an,an+k,an+2k,an+3k,?为等比数列,公比为qkqk;
④q≠1q≠1的等比数列的前2n2n项,S偶=a2?[1?(q2)n]1?q2S偶=a2?[1?(q2)n]1?q2,S奇=a1?[1?(q2)n]1?q2S奇=a1?[1?(q2)n]1?q2,则S偶S奇=qS偶S奇=q;
⑤等比数列的单调性,取决于两个参数a1a1和qq的取值,an=a1?qn?1an=a1?qn?1;
等比数列中求公比q的公式
1、等比数列中的等比中项公式,
已知前项a,后项b,中项G,则q=G/a=b/G;
2、等比数列通项公式,
an=a1q^(n-1),已知,a1,an和n,
则q^(n-1)= an/a1,
∴q=(an/a1)^[1/(n-1);
3、等比数列前n项和公式,
(1)Sn=a1(1-q^n)/(1-q),q≠1,已知Sn,a1和n,
则(1-q^n)/(1-q)=Sn/a1,搜索
用尝试—逐步逼近法解这个高次方程,求得q的值。
(2))Sn=a1(1-anq)/(1-q),已知Sn,a1和anq
(1-q)=a1(1-anq)/Sn
∴q=1-a1(1-anq)/Sn。
等比数列求通项方法
(1)待定系数法:已知an+1=2an+3,a1=1,求an?
构造等比数列an+1+x=2(an+x)
an+1=2an+x,∵an+1=2an+3 ∴x=3
∴(an+1+3)/ an+3=2
∴{an+3}为首项为4,公比为2的等比数列,所以an+3=a1×qn-1=4×2n-1,an=2n+1-3
(2)定义法:已知Sn=a·2n+b,求an的通项公式?
∵Sn=a·2n+b∴Sn-1=a·2n-1+b
∴an=Sn-Sn-1=a·2n-1。
云课堂(sxtgedu.net)专注教育信息,涵盖范文,研究生,考研,本科大学,MBA,高考,成人自考,艺考,中专,技校,职业学校,高职,卫校录取分数,成绩查询,招生简章等信息